Contents

Contributors and reviewers 15

List of figures and tables 17

Introduction Dietetic Pocket Guide paediatrics 23

1 Nutritional status and assessment 27
 1.1 Quality assurance framework 27
 1.2 Anthropometrics checklist 29
 1.3 Measuring body weight and height 31
 1.3.1 Weight 32
 1.3.2 Height/length 33
 1.3.2.1 Alternative methods for measuring height 35
 1.4 Measuring and interpreting BMI 38
 1.4.1 Weight-for-age 39
 1.4.2 Height-for-age 39
 1.4.3 Weight-for-height 39
 1.5 Fundamental criteria for malnutrition 40
 1.5.1 Faltering growth and malnutrition in children 40
 1.6 Screening instruments for poor nutritional status in children 42

2 Body composition and clinical assessment 45
 2.1 Composition of the body 45
 2.1.1 Body composition levels 45
 2.1.2 Distribution of body fluids 47
 2.1.3 Distribution of body surface area 48
2.2 Methods to measure body composition
2.2.1 Indirect methods
 2.2.1.1 DEXA
 2.2.1.2 CT scan
 2.2.1.3 Air Displacement Plethysmography Technology (ADP)
2.2.2 Double indirect methods
 2.2.2.1 Bio-electrical impedance analysis/spectroscopy (BIA/BIS)
 2.2.2.2 Skinfolds
 2.2.2.3 Waist circumference (WC)
 2.2.2.4 Mid-upper arm circumference (MUAC)
2.3 Clinical assessment of nutritional deficiencies

3 Energy, protein and fluid requirements
3.1 Energy metabolism
 3.1.1 The citric acid cycle
 3.1.2 The physiology of fasting
 3.1.3 Energy units
 3.1.4 Gross and net energy values: Atwater factors
3.2 Energy requirements of children
 3.2.1 Energy requirements in health
 3.2.2 Overview of energy requirements in illness
 3.2.3 Estimating the resting energy expenditure
3.3 Protein requirements of children
 3.3.1 Protein requirements in different age and patient groups
 3.3.2 Protein for catch-up growth
3.4 Energy and protein requirements of premature infants
3.5 Fluid requirements of children
4 Micronutrient requirements

4.1 Understanding micronutrient requirements

4.2 Micronutrients
 4.2.1 Basic information on micronutrients
 4.2.2 Conversion factors for vitamin units
 4.2.3 Dietary reference values of vitamins, minerals and trace elements
 4.2.4 Maximum safe dose and toxic levels of vitamins, minerals, and trace elements
 4.2.5 Conversion from mmol to mg

5 Disease specific classifications and requirements

5.1 Impact of disease on nutritional requirements

5.2 Specific conditions and diseases
 5.2.1 Preterm infants
 5.2.2 Neurological disabilities
 5.2.3 Inborn errors of metabolism
 5.2.4 Severe and moderate acute malnutrition
 5.2.5 Overweight and obesity
 5.2.6 Critically ill children in Intensive Care
 5.2.7 Thermal injuries
 5.2.8 Heart and vessels
 5.2.8.1 Congenital heart disease
 5.2.8.2 Lipid disorders
 5.2.9 Lungs
 5.2.9.1 Cystic fibrosis
 5.2.9.2 Tuberculosis
 5.2.10 Kidney
 5.2.10.1 Acute kidney failure
 5.2.10.2 Chronic kidney failure
 5.2.11 Liver
5.2.12 Pancreas 168
 5.2.12.1 Pancreatitis 168
 5.2.12.1 Diabetes 171
5.2.13 Intestines 177
 5.2.13.1 Acute and chronic diarrhoea 177
 5.2.13.2 Inflammatory bowel disease 181
 5.2.13.3 Coeliac disease 184
 5.2.13.4 Intestinal failure 186
5.2.14 Food allergy 189
5.2.15 Eating disorders 191
5.2.16 Feeding difficulties 196
5.2.17 Human immune deficiency virus (HIV)/Acquired immune deficiency syndrome (AIDS) 199
5.2.18 Paediatric oncology 201
5.3 Enteral and parenteral nutrition 209
 5.3.1 Enteral nutrition 209
 5.3.2 Parenteral nutrition 215
5.4 Disease-specific scores 223

6 Gastrointestinal tract, digestion, absorption and losses 227

6.1 Mouth and taste 227
 6.1.1 Taste and smell in oral feeding of infants and young children 228
6.2 Gastrointestinal tract 229
 6.2.1 Anatomy 229
 6.2.2 Transit time of the gastrointestinal tract 234
 6.2.3 Digestion 234
 6.2.4 Absorption 238
 6.2.5 Intestinal absorption capacity and malabsorption 240
6.3 Faecal losses 240
6.4 Faecal consistency 246
 6.4.1 Chronic constipation 247
 6.4.2 Diarrhoea 248
6.5 Water balance 250
6.6 Urine losses 251
 6.6.1 Sodium in urine 251
 6.6.2 Nitrogen balance (N-balance) 252
 6.6.2 Ketones in urine 253

7 Laboratory values 255
7.1 General conversion factors 255
7.2 Reference ranges for laboratory measurements 255
7.3 Protein in the blood 267
 7.3.1 Acute-phase proteins 268
 7.3.2 Half-lives 268
7.4 Refeeding syndrome 268
 7.4.1 Patients at risk of refeeding syndrome 269
 7.4.2 Prevention and treatment of refeeding syndrome 270
 7.4.3 Supplementation of vitamins, trace elements and electrolytes in refeeding syndrome 270
7.5 Anaemia 274
7.6 Blood gas values (Astrup) 275
7.7 HbA1c 276
7.8 The calcium phosphate balance 278

8 Medication-nutrient interactions 279
8.1 Overview medication-nutrient interactions 279
8.2 Pharmacodynamic interaction 280
8.3 Pharmaceutical interaction 282
 8.3.1 Recommendations for reviewing enteral administration of medication 285
8.4 Osmolarity and osmolality 286
8.5 Anti-retroviral medication (ARV) 287
8.6 Pancreatic enzyme supplements (PERT) 289
8.7 Intravenous fluids 291

9 Assessment of other outcome measures 293

9.1 Handgrip strength 293
9.2 Dietary outcome markers 295
 9.2.1 Visual analog scale (VAS) 295
 9.2.2 Food intake 296
9.3 Health related quality of life as outcome measure 298
9.4 Assessment of pain 299
9.5 Feeding difficulty/fussy eating questionnaires 301
9.6 Assessing family food security 303
9.7 Assessing outcome of nutritional services provided to patients 305

References 307

Index 339

About the authors 347
Many thanks to all the contributors for reviewing chapters and giving feedback:

Sian Philips
Cystic Fibrosis Dietitian
Southampton Children's Hospital
Southampton
United Kingdom

Rebecca Weeks
Diabetes Dietitian
Southampton Children's Hospital
Southampton
United Kingdom

Hayley Kuter
Neurodisability Dietitian
United Kingdom

Konstantinos Gerasimidis
Senior Lecturer
University of Glasgow
Glasgow
United Kingdom

Claire De Koker
Paediatric Dietitian
Medical Research Council
Tijgerberg
South Africa

Isabel Fischer
Dietitian Universitäts Kinderspital
Zürich – Eleonorenstiftung
Zürich
Switzerland

Tessa Kingma and Anita Stok
Dietitians from the department of Nutrition and Dietetics
Amsterdam University Medical centers
Amsterdam
the Netherlands

Sylvia Walet and Wendy Kastelijn
Dietitians department of Dietetics
Medical Center of Erasmus MC
Rotterdam
the Netherlands

Shihaam Cader
Head of Department of Dietetics, Red Cross War Memorial Children’s Hospital Cape Town
South Africa
List of figures and tables

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Illustration of length measurement of a child < 2 years of age</td>
<td>34</td>
</tr>
<tr>
<td>1.2</td>
<td>Illustration of standing height measurement</td>
<td>34</td>
</tr>
<tr>
<td>1.3</td>
<td>Measuring knee height while lying down</td>
<td>36</td>
</tr>
<tr>
<td>1.4</td>
<td>Measuring knee height while sitting</td>
<td>36</td>
</tr>
<tr>
<td>1.5</td>
<td>Ulna length</td>
<td>37</td>
</tr>
<tr>
<td>1.6</td>
<td>Causes of malnutrition from Meyer adapted from Mehta et al.</td>
<td>41</td>
</tr>
<tr>
<td>2.1</td>
<td>Body composition at the atomic, molecular, cellular, tissue and whole body level</td>
<td>45</td>
</tr>
<tr>
<td>2.2</td>
<td>Changes in proportion of body composition with growth and aging</td>
<td>46</td>
</tr>
<tr>
<td>2.3</td>
<td>Changes in fat and fat-free mass in girls and boys from infancy to early adulthood</td>
<td>47</td>
</tr>
<tr>
<td>2.4</td>
<td>Distribution of body surface area</td>
<td>48</td>
</tr>
<tr>
<td>2.5</td>
<td>Example of a DEXA scan for body composition</td>
<td>52</td>
</tr>
<tr>
<td>2.6</td>
<td>PAE POD© for babies (1-8 kg)</td>
<td>53</td>
</tr>
<tr>
<td>2.7</td>
<td>Air displacement plethysmography technology (ADP) (BOD POD©)</td>
<td>54</td>
</tr>
<tr>
<td>2.8</td>
<td>Bio-electrical impedance analysis</td>
<td>55</td>
</tr>
<tr>
<td>2.9</td>
<td>Four skinfolds: biceps, triceps, subscapular and suprailiac</td>
<td>61</td>
</tr>
<tr>
<td>2.10</td>
<td>Measuring MUAC</td>
<td>74</td>
</tr>
<tr>
<td>2.11</td>
<td>Vitamin and mineral deficiencies: clinical signs</td>
<td>76</td>
</tr>
<tr>
<td>3.1</td>
<td>Glycolysis and the citric acid cycle</td>
<td>78</td>
</tr>
<tr>
<td>4.1</td>
<td>Classification of Dietary Reference Values (adjusted from British Nutrition Foundation)</td>
<td>91</td>
</tr>
</tbody>
</table>
6.1 Anatomy of gastrointestinal tract 229-230
6.2 Transit time based on TIM through the stomach and small intestine, and acidity of the stomach in a baby and in an adult when digesting liquid food (A) and for different types of food for an adult (B) 233
6.3 Production and reabsorption of fluid and digestive juices in the gastrointestinal tract (ml/d) 235
6.4 Digestion of macronutrients in the gastrointestinal tract 238

8.1 Working model of drug-nutrient interactions 280

9.1 Handgrip strength 294
9.2 VAS for appetite 296
9.3 Scale to establish hunger and satiety 296

Tables

1 Dietetic diagnostic toolkit 24
1.1 Anthropometry checklist for healthcare centres 29
1.2 Characteristics of Z-scores and percentiles 31
1.3 Equations for estimating body height from knee height measurement 37
1.4 Summary of cut-offs for obesity as per WHO guidelines 38
1.5 WHO classifications of malnutrition in children 40
1.6 Nutritional status screening tools for paediatrics 43

2.1 Adjustment in body weight with an amputation based on adults as no current paediatric data exists 49
2.2 Methods to measure body composition 50
2.3 Selection of formulas to calculate the fat-free mass using the outcomes of bio-electrical impedance analysis 57
2.4 Age- and sex-specific reference percentiles for fat mass index (FMI) in children and adolescents aged 8-20 years 59
List of figures and tables

2.5 Reference values for the conversion of the sum of 4 skinfolds (mm) into fat mass percentage for children 62
2.6 Triceps skinfolds-for-age for boys and girls (WHO) 63
2.7 Smoothed percentiles for triceps skinfold-for-age (mm): boys aged 5-18 years 65
2.8 Smoothed percentiles for triceps skinfold-for-age (mm): girls aged 5-18 years 66
2.9 Smoothed percentiles for subscapular skinfold-for-age (mm): boys aged 5-18 years 67
2.10 Smoothed percentiles for subscapular skinfold-for-age (mm): girls aged 5-18 years 68
2.11 Waist circumference percentiles for European-American children and adolescents (NHANES 2004) 70
2.12 Waist circumference percentiles for African-American children and adolescents (NHANES 2004) 71
2.13 Waist circumference standards for European children 72
2.14 Simplified cut-off values for MUAC-for-age 75

3.1 Short- and long-term fasting without inflammation – timing changes between young and older children 79
3.2 Metabolic changes in children during acute and convalescent phase 81
3.3 The Atwater factors 82
3.4 Total energy requirements in healthy children 83
3.5 The FAO/WHO/UNO and Schofield equation for estimating the resting energy expenditure (REE) and total energy expenditure (TEE) of children 85
3.6 Safe level of protein intake for weaned infants and children up to 10 years (sexes combined) (grams of protein/kg body weight/d) 86
3.7 Safe levels of protein intake for adolescent boys and girls (grams of protein/kg body weight/d) 87
3.8 Theoretical energy and protein intake for 5, 10 and 20 g/kg/d catch-up growth 88
3.9 Nutrition goals for premature infants in neonatal unit
≤ 72 hours

3.10 Nutrition goals for premature infants in neonatal unit
≥ 72 hours

3.11 Holliday-Segar method for calculating maintenance fluid requirements in children

4.1 Overview of synonyms, function, symptoms of deficiencies and food sources of vitamins, minerals and trace elements

4.2 Conversion factors for vitamins: weight units and international units

4.3 Recommended Nutrient Intake of vitamins, minerals and trace elements by age category according to WHO and EFSA

4.4 Maximum safe upper limit/toxic levels of vitamins, minerals and trace elements

4.5 Conversion factors for minerals and trace elements: weight units and molecular mass

5.1 Preterm infants

5.2 Neurological disabilities

5.3 Inborn errors of metabolism

5.4 Management of severe and moderate acute malnutrition based on WHO 10 steps

5.5 Overweight and obesity

5.6 Critical illness

5.7 Thermal injuries

5.8 Congenital heart disease

5.9 Familial hypercholesterolaemia

5.10 Cystic fibrosis

5.11 Tuberculosis

5.12 Acute kidney disease

5.13 Chronic kidney disease

5.14 Nutrition management strategies for infantile conjugated hyperbilirubinemia and cholestatic jaundice
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.15</td>
<td>Acute liver failure</td>
<td>163</td>
</tr>
<tr>
<td>5.16</td>
<td>Chronic liver disease</td>
<td>165</td>
</tr>
<tr>
<td>5.17</td>
<td>Acute and chronic pancreatitis</td>
<td>169</td>
</tr>
<tr>
<td>5.18</td>
<td>Diabetes</td>
<td>171</td>
</tr>
<tr>
<td>5.19</td>
<td>Acute and chronic diarrhoea</td>
<td>177</td>
</tr>
<tr>
<td>5.20</td>
<td>Crohn’s disease</td>
<td>182</td>
</tr>
<tr>
<td>5.21</td>
<td>Coeliac disease</td>
<td>184</td>
</tr>
<tr>
<td>5.22</td>
<td>Intestinal failure</td>
<td>186</td>
</tr>
<tr>
<td>5.23</td>
<td>Food allergy</td>
<td>190</td>
</tr>
<tr>
<td>5.24</td>
<td>Eating disorders</td>
<td>192</td>
</tr>
<tr>
<td>5.25</td>
<td>Feeding difficulties</td>
<td>197</td>
</tr>
<tr>
<td>5.26</td>
<td>Human immune deficiency virus (HIV)/acquired immune deficiency syndrome (AIDS)</td>
<td>200</td>
</tr>
<tr>
<td>5.27</td>
<td>The TNM classification of malignant tumours</td>
<td>202</td>
</tr>
<tr>
<td>5.28</td>
<td>Oncology</td>
<td>204</td>
</tr>
<tr>
<td>5.29</td>
<td>Enteral nutrition</td>
<td>210</td>
</tr>
<tr>
<td>5.30</td>
<td>Parenteral nutrition</td>
<td>215</td>
</tr>
<tr>
<td>5.31</td>
<td>Monitoring PN for short-term</td>
<td>222</td>
</tr>
<tr>
<td>5.32</td>
<td>Monitoring PN for long-term</td>
<td>222</td>
</tr>
<tr>
<td>5.33</td>
<td>Overview of several disease-specific scores</td>
<td>223</td>
</tr>
<tr>
<td>6.1</td>
<td>Length of the intestinal segments varies depending on gestational age at birth and age</td>
<td>231</td>
</tr>
<tr>
<td>6.2</td>
<td>Small bowel length based on age, weight or height</td>
<td>232</td>
</tr>
<tr>
<td>6.3</td>
<td>Quantity and functions of digestive juices in the gastrointestinal tract</td>
<td>236</td>
</tr>
<tr>
<td>6.4</td>
<td>Absorption of nutrients in the gastrointestinal tract</td>
<td>239</td>
</tr>
<tr>
<td>6.5</td>
<td>Faecal diagnostic tests</td>
<td>241</td>
</tr>
<tr>
<td>6.6</td>
<td>Bristol scale for the consistency of faeces</td>
<td>246</td>
</tr>
<tr>
<td>6.7</td>
<td>Rome IV diagnostic criteria for functional constipation</td>
<td>247</td>
</tr>
<tr>
<td>6.8</td>
<td>Differential diagnosis of osmotic and secretory diarrhoea</td>
<td>248</td>
</tr>
</tbody>
</table>
Dietetic Pocket Guide *paediatrics*

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>List of reference ranges for laboratory values in blood</td>
<td>256</td>
</tr>
<tr>
<td>7.2</td>
<td>Reference ranges for vitamins, minerals and trace elements</td>
<td>264</td>
</tr>
<tr>
<td>7.3</td>
<td>List of reference ranges for laboratory values in urine</td>
<td>266</td>
</tr>
<tr>
<td>7.4</td>
<td>Half-lives for proteins in blood</td>
<td>268</td>
</tr>
<tr>
<td>7.5</td>
<td>Biochemical and symptomatic refeeding syndrome characteristics</td>
<td>269</td>
</tr>
<tr>
<td>7.6</td>
<td>Electrolyte supplementation recommendations in severe acute malnutrition</td>
<td>271</td>
</tr>
<tr>
<td>7.7</td>
<td>Feeding strategy in refeeding syndrome</td>
<td>273</td>
</tr>
<tr>
<td>7.8</td>
<td>Terms used in the interpretation of type and cause of anaemia</td>
<td>274</td>
</tr>
<tr>
<td>7.9</td>
<td>Abbreviated version of the HbA1c calculation table</td>
<td>276</td>
</tr>
<tr>
<td>7.10</td>
<td>Serum glucose conversion table (mmol/l and mg/dl)</td>
<td>277</td>
</tr>
<tr>
<td>8.1</td>
<td>General considerations when assessing the ingredients of enteral feeds/supplements</td>
<td>281</td>
</tr>
<tr>
<td>8.2</td>
<td>Medications and considerations for tube feeding</td>
<td>283</td>
</tr>
<tr>
<td>8.3</td>
<td>Reference ranges of osmolality</td>
<td>286</td>
</tr>
<tr>
<td>8.4</td>
<td>Osmolality and electrolyte content of Oral rehydration solutions and liquids commonly used for rehydration</td>
<td>287</td>
</tr>
<tr>
<td>8.5</td>
<td>Purpose, distribution and possible side effects of antiretroviral medication</td>
<td>288</td>
</tr>
<tr>
<td>8.6</td>
<td>Examples of pancreatic enzyme replacement therapy</td>
<td>290</td>
</tr>
<tr>
<td>8.7</td>
<td>Composition of intravenous fluids</td>
<td>291</td>
</tr>
<tr>
<td>9.1</td>
<td>Percentile distribution of reference values of handgrip strength (in kg) by Dodds according to age and gender (dominant hand)</td>
<td>295</td>
</tr>
<tr>
<td>9.2</td>
<td>Methods to determine food intake</td>
<td>297</td>
</tr>
<tr>
<td>9.3</td>
<td>Validated health-related quality of life tools for paediatrics</td>
<td>298</td>
</tr>
<tr>
<td>9.4</td>
<td>The FLACC behavioural pain scale</td>
<td>300</td>
</tr>
<tr>
<td>9.5</td>
<td>Feeding questionnaires</td>
<td>301</td>
</tr>
<tr>
<td>9.6</td>
<td>Food Security Questionnaire adjusted from Pilgrim et al.</td>
<td>304</td>
</tr>
<tr>
<td>9.7</td>
<td>Nutritional pathway</td>
<td>305</td>
</tr>
</tbody>
</table>
The backbone to clinical care provided by the dietitian is a thorough nutritional assessment, which comprises anthropometrical assessment, review of biochemical markers, clinical assessment and dietary review. In this Dietetic Pocket Guide paediatrics we provide guidance on all of these factors including normative values for biochemical markers and most importantly we also provide guidelines for nutritional requirements which can be used for both hospitalised and outpatients. The information from the nutritional assessment, together with the history reported by the carers will allow you to develop your dietetic treatment plan, which can be used to evaluate the effectiveness of treatment.

The assessment of nutritional status is complex and in practice, doing this systematically, allows the healthcare professional to critically assess each parameter that will inform clinical practice (Table 1).
Table 1 Dietetic diagnostic toolkit

<table>
<thead>
<tr>
<th>Somatic factors</th>
<th>Functional factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Age, gender</td>
<td>■ Activity pattern</td>
</tr>
<tr>
<td>■ Anthropometry (body weight, head circumference, length/height, BMI)</td>
<td>■ Exercise/sport</td>
</tr>
<tr>
<td>■ Appetite</td>
<td>■ Grip strength – older children</td>
</tr>
<tr>
<td>■ Body composition (lean BM/FFM Index, phase angle)</td>
<td>■ Physical development</td>
</tr>
<tr>
<td>■ Diagnoses and disease stage/characteristics</td>
<td></td>
</tr>
<tr>
<td>■ Energy expenditure</td>
<td></td>
</tr>
<tr>
<td>■ Feeding difficulties and swallowing issues</td>
<td></td>
</tr>
<tr>
<td>■ Food and fluid intake</td>
<td></td>
</tr>
<tr>
<td>■ Gastrointestinal issues</td>
<td></td>
</tr>
<tr>
<td>■ Hospital admission/surgery/treatment</td>
<td></td>
</tr>
<tr>
<td>■ Laboratory test results</td>
<td></td>
</tr>
<tr>
<td>■ Medication</td>
<td></td>
</tr>
<tr>
<td>■ Activity pattern</td>
<td></td>
</tr>
<tr>
<td>■ Exercise/sport</td>
<td>■ Grip strength – older children</td>
</tr>
<tr>
<td>■ Physical development</td>
<td>■ Physical development</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Psychological factors (parental and child)</th>
<th>Social factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Anxiety</td>
<td>■ Activities/interests/hobbies</td>
</tr>
<tr>
<td>■ Aversion</td>
<td>■ Child in need/foster care</td>
</tr>
<tr>
<td>■ Coping with loss</td>
<td>■ Childcare/(type of) school</td>
</tr>
<tr>
<td>■ Depression/psychological disorder</td>
<td>■ Education level/type school</td>
</tr>
<tr>
<td>■ Development/cognitive disorder</td>
<td>■ Extent of participation in society</td>
</tr>
<tr>
<td>■ Insight into disease</td>
<td>■ Family financial difficulties</td>
</tr>
<tr>
<td>■ Motivation/ stage of behavioural change</td>
<td>■ Household food security</td>
</tr>
<tr>
<td>■ Stress</td>
<td>■ Personal and family situation</td>
</tr>
<tr>
<td>■ Quality of life</td>
<td>■ Safeguarding issues – abuse/exploitation</td>
</tr>
<tr>
<td>■ Safeguarding issues – abuse/exploitation</td>
<td>■ Social network</td>
</tr>
<tr>
<td>■ Social network</td>
<td>■ Vulnerable young adults</td>
</tr>
</tbody>
</table>

The *Dietetic Pocket Guide paediatrics* was edited by a team of dietitians from the United Kingdom and the Netherlands with the aim to support an evidence-based and uniform approach to dietetic diagnosis. The editors gratefully received support from many specialist dietitians and physicians for sections in this pocket guide. This is the first version of *Dietetic Pocket Guide paediatrics*, but follows the very successful Dutch version (‘Zakboek Diëtiek’) and recently published adult version (*Dietetic Pocket Guide adults*). As in the adult version, the focus of the paediatric version lies in the information required to complete the assessment of nutritional status and the dietetic diagnosis, and it follows the existing international guidelines as closely as possible. The *Dietetic Pocket Guide paediatrics* also has an additional section on nutritional requirements to guide users not only on assessment but also on dietary management. These guidelines and consensus proposals for the nutritional assessment, implementation, norms and nutritional requirements will help dietitians with the clinical rationale and integration of nutritional assessment followed by requirements, which will also help with monitoring effectiveness of treatment.

The *Dietetic Pocket Guide paediatrics* is not a replacement for specialty specific textbooks and research publications which dietitians are motivated to stay abreast of. It is a guide aimed for quick reference and bedside use to guide clinical practice.